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SUMMARY

A variable inlet guide vane (VlGV) convertible engine that could be used
to power future high-speed V/STOL and rotorcraft was tested on an outdoor

stand. The engine ran stably and smoothly in the turbofan, turboshaft, and

dual (combined fan and shaft) power modes. In the turbofan mode with the VIGV

open, fuel consumption was comparable to that of a conventional turbofan

engine. In the turboshaft mode with the VIGV closed, fuel consumption was

higher than that of present turboshaft engines because power was wasted in

churning fan-tip airflow. In dynamic performance tests with a specially built

digital engine control and using a waterbrake dynamometer for shaft load, the

engine responded effectively to large steps in thrust command and shaft torque.

INTRODUCTION

A convertible engine can produce turbofan thrust, turboshaft power, or any

combined thrust and shaft power continuously while operating up to full speed.

Convertible englnes could be used to power vertical/short-takeoff-and-landing

(V/STOL) airplanes and advanced high-speed rotorcraft such as those shown in

figures l and 2. The V/STOL applications include thrust modulation, direc-

tional control, and fan cross-coupling for two-engine configurations to improve

safety in case one engine should fail. These features, as used on the Vought

V530 and Grumman 698 airplanes (ref. l) are feasible because convertible engine

thrust and power can be varied quickly by changing engine geometry rather than

engine speed. For rotorcraft a convertible engine would operate as a turbo-

shaft engine to drive a lifting rotor for vertical and low-speed horizontal

flight, and as a tu_rbofan engine to produce thrust for high-speed horizontal
flight.

In a convertible engine the power turbine drives both the fan and an out-

put shaft connected to some other load. Total turbine power is just the sum of

the powers absorbed by all the loads; therefore any turbine power over that

needed by the fan is available at the power output shaft. Maximum turbine

power is limited by cycle temperature (fuel flow) and speed. For high thrust

the shaft load is reduced or decoupled, as by releaslng a clutch. When shaft

power is required, the fan is unloaded aerodynamically. Two general methods
have been devised to unload the fan (ref. 2). One method is based on variable-

pitch fan blades - fan power is reduced as the pitch is made "flatter." This

method has been demonstrated in tests of engines such as QCSEE (ref. 3), Q-fan

(ref. 4), and Astafan (tested successfully as a convertible engine in a U.S.

Army Research and Technology Laboratories test program). The other method is

based on variable inlet guide vanes (VIGV) that can be deflected to change fan

airflow and inflow swirl - fan power is reduced as the vanes are closed. This
method has been demonstrated in fan research tests (ref. 5) and in tests of a

high-bypass-ratio turbofan engine with no output shaft power (ref. 6).



Recognizing the potentlal Installatlon and performance advantages of con-
vertible engines, the Defense Advanced Research Project Agency (DARPA) and the

Natlonal Aeronautlcs and Space Admlnlstratlon (NASA) joined in a Convertlble

Englne System Technology (CEST) Program to establish the feaslb111ty of the

convertlble engine concept. This program expanded basic technology, generated

deslgn crlterla, and provlded data and experlence appllcable to engines and
controls for future convertlble propulslon systems. The program Included

deflnlng requirements for convertlble engine systems and evaluatlng an englne

type that could be used on advanced aircraft Includlng several V/STOL designs
(ref. I), the X-wing (refs. 7 and 8), and the foldlng tilt rotor (refs. 9

and 10) (In whlch use of a new torque converter was proposed to uncouple the

fan for shaft-only power). The experlmental work described in thls report was
done at NASA Lewis Research Center. The englne was a TF34-400B (8000-1b-thrust

class) turbofan modlfled to a VIGV convertible englne. The tests were per-
formed on an outdoor test stand wlth a waterbrake dynamometer used for the

shaft load. For some tests a new dlgiltal electronlc system was used to control

englne speed and varlable-geometry actuators. The test objectlves were to dem-

onstrate operatlon of thls type of-convertlble englne in the turbofan, turbo-
shaft, and dual (comblned fan and shaft) power modes and to evaluate the

effects of the new and modlfled components on performance through Internal
flow path measurements.

The tests included steady-state and dynamlc performance tests plus engine

response to slmulated aircraft maneuvers requlring fast response to changes In

thrust or shaft torque command. In many cases, the results will be interpreted
for appllcatlon to V/STOL propulslon requlrements. The engine tests are summa-

rlzed In thls paper by showing typical results at selected operatlng condi-

tlons. Detailed results and a more thorough discusslon of the steady-state
tests are glven in reference 11.

F

FR

NF

NFR

PNSD

PNSDR

T

T4.5

NOMENCLATURE

engine gross thrust, 1 Ib

referred englne gross thrust, I F/6

fan, power-output-shaft, and power-turblne speed, percent of rated
speed

referred fan, power-output-shaft, and power-turblne speed,
NF/ e, percent of rated speed

output shaft power, hp

referred output shaft power, PNSD/6 e

temperature, °R

power-turbine inlet total temperature, °R

ICalled "gross thrust" because, by convention with the TF34 englne, the

reported thrust is net (measured in test stand) thrust plus calculated core
cowllng scrubbing drag.
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T4.5R

T4.5R,L

WA12

WA12R

WF

WFR

6

referred power-turbine inlet total temperature, T4.5/(e) 0.84

upper limit of power-turbine inlet total temperature for standard

TF34 engine, °R

fan-tip airflow, Ib/sec

referred fan-tip airflow, WA]2 e/6

fuel flow rate, Ib/hr

referred fuel flow rate, WF/6e

ratio of pressure to 14.696 psi

ratio of temperature to 518.7 °R

APPARATUS AND PROCEDURE

Engine

The test engine was a previously used TF34-400B especially modified by the

manufacturer as sketched in Fig. 3. The standard TF34 is a 6:1 bypass ratio

turbofan that can produce 9100 Ib of sea-level-static thrust. The single-stage

fan is driven by a four-stage low-pressure turbine. The core has a 14-stage

axial compressor, an annular combustor, and a two-stage high-pressure turbine.

The engine modifications, shown in more detail in figure 4, were made by

using as many existing parts as feasible. The resulting configuration, called

the CEST TF34, was not meant to be a production engine. The fan was unloaded

aerodynamically by deflecting part-span VIGV to change the rate and swirl angle

of the flow entering the fan tip. The vanes are "part span" because they reach

only from the outer wall to the core/bypass flow splitter and thus have little
effect on core flow. When the vanes are deflected, the fan air load is reduced

and the power turbine can drive an external load through the power output
shaft.

Each of the major modifications is described in the following paragraphs.
For additional detail, consult references II and 12.

Variable inlet guide vanes. - A set of 30 vanes was installed just ahead

of the fan rotor to unload the fan in the turboshaft power mode. Each vane

consisted of a fixed forward strut and a movable rear flap. The flaps were

deflected together by a hydraulic actuator system.

Flow splitter. - The core/bypass flow splitter was extended forward to the
VIGV to minimize core inlet flow distortion from the deflected VIGV.

Fan blades. - Full-chord shrouds, continuing the core/bypass flow split-
ter, were added to the standard TF34 fan blades. The shrouds were hollow to

reduce weight, and contained seals to minimize leakage between the hub and tip

flows. In addition, the hub airfoil shape was changed to improve pumping per-
formance in the low-aspect-ratio passage formed by the hub/splitter annulus.



Variable exit guide vanes. - A set of 44 variable exit guide vanes (VEGV)

replaced the same number of standard TF34 exit stator vanes in the fan-tip
(bypass) flow. Deflection of the new vanes by hydraulic actuators was sched-

uled to VIGV deflection to prevent stall buffetting at high VIGV closure such

as was encountered in previous tests of a similar conf|guration (ref. 6).

Bleed valve. - A core/bypass bleed valve was |nstalled |n the flow split-

ter behind the VEGV to improve the fan-hub/core-engine flow match at low-power

operation. The valve was a sliding-ring valve moved by three actuators evenly
spaced around the core engine.

Shaft extension. - The power output shaft extended forward from the fan

disk. The extension included a flex|ble coupling and bearings supported by

spider struts built into the Inlet ductlng.

Control Systems

For _he CEST TF34, fan speed and thrust were controlled by the eng|ne con-

trol system, and shaft torque (power) was controlled by the waterbrake torque
control.

Engine control system. - A new digital control system (described in

(ref. 13)) was supplied with the engine. The system worked together with the

standard TF34 fuel control in two operating modes.

(I) In the "shaft" mode the digital system varied the VIGV (open loop) to
match the thrust command input and adjusted the fuel to hold the fan speed
steady (closed loop) as the output shaft torque changed.

(2) In the "thrust" mode the digital system locked the VIGV in the fully

open position and controlled the fan speed to a preprogrammed schedule (open

loop) to match the thrust command input.

In both modes the control also adjusted the VEGV and the bleed valve to posi-
tions determined from internally programmed schedules.

Waterbrake torque control. - The waterbrake torque control system adjusted

the power output shaft torque (closed loop) to match the torque command input.

Control was accompllshed by positioning the exit flow valve to vary the water

annulus level in the waterbrake. The water throughflow rate, and thus the

water temperature rise, was set by sizing the inlet flow valve.

The excellent performance of the waterbrake and its control is indlcated

by its response to a large torque command step (fig. 5). The exit flow valve,

driven by a large hydraulic actuator and a high-response electrohydraulic

servovalve, moved fast enough to change torque at a rate of more than

12 000 ft-lb/sec. For the test shown the engine fuel flow was fixed (nominally
constant engine power) and the water inlet valve was of maximum size. For

smaller inlet valve openings the torque changed at a lower rate because the

water annulus filled more slowly. The initial dead time in torque response may

have been caused by an unexplained flow effect within the waterbrake; its pres-

ence caused no problems in the tests reported herein but might limit other

types of control transient testing that can be done successfully with this type
of power absorber.



Test Facility and Engine Installation

The engine was tested on an outdoor static test stand at NASALewis
(fig. 6). The separate-flow exhaust nozzles were standard TF34 nonadjustable
nozzles. The power output shaft was supported by a pedestal just in front of
the bellmouth and then connected to the waterbrake. A honeycombscreen flow
straightener was located at the bellmouth. The honeycombcaused up to
2-percent total-pressure loss but reduced inlet distortion that might have
been caused by the shaft support pedestal. The residual distortion near the
fan face, indicated by the conventional gradient parameter (Maximumtotal pres-
sure - Minimumtotal pressure)/Average total pressure, was only about
0.5 percent.

Total-pressure rakes, wall-pressure orifices, thermocouples, load cells,
fuel flowmeters (both turbine and beamtypes), and other conventional instru-
mentation transducers were used to measure steady-state engine operation and
internal flow path performance. Becausetransient engine changeswere slow
enough that the necessary transducers could follow the changes satisfactorily,
no special dynamic performance instrumentation was required. A photoelectric
scanner (ref. 14) was used to monitor fan-blade-tip motions for possible aero-
mechanical instability.

Procedure and Data Recording

Steady-state tests. - The steady-state tests were performed with the

engine running at constant referred speed. The engine VIGV, VEGV, and bleed

valve positions, plus the waterbrake torque, were adjusted manually as desired.
Performance data were averaged from several (usually 20) scans through the

instrumentation list. Computed results are referred to the engine inlet plane

just ahead of the VIGV.

Dynamic tests. - Some of the dynamic tests were performed with the engine
control in the thrust mode, but most were performed in the shaft mode because

that mode is more typical of V/STOL and rotorcraft operation. After steady-
state data were taken to define the transient end points, the transient was

performed with thrust command to the eng1=ne control and torque command to the

waterbrake torque control. Both commands were generated by programmable facil-

ity controllers. The commands and selected performance data were recorded on

magnetic tape and later digitized or played back on strip charts for analysis.

CEST TF34 TEST RESULTS AND DISCUSSION

The test results presented in this report were obtained on an outdoor

static test stand and are referred (corrected) to sea-level-static, standard-

day conditions at the engine inlet. Symbols used in this report are defined in

an appendix.

Steady-state Tests

Data are shown for a referred fan speed NFR of 90 percent, and are

representative of performance for speeds of 70 to lO0 percent. Complete test
results are contained in reference If.



Thrust and shaft power. - When the engine is running with no output shaft

power, it is said to be operating in the turbofan mode; when it is running at

limiting power-turbine inlet temperature T4.SR,L, in the turboshaft mode; when
It is running with both thrust and shaft power, in the dual power mode.

As shown in figure 7, at constant referred fan speed the shaft power in

the turboshaft mode was greatest with the VIGV closed. As the power-turbine

inlet temperature T4.5 R was reduced by decreasing fuel flow at any fixed VIGV

position, the engine produced less shaft power when running in the dual power

mode, but the thrust was reduced only slightly because the fan-tip flow and the

speed were the same. In the turbofan mode the thrust was highest with the VIGV

open. Although the thrust decreased as the VIGV closed, thrust never went to
zero. Residual thrust was mainly from the core engine. The engine was stable

as speed, output shaft power, and any of the variable engine hardware settings

were changed. It ran smoothly in all modes, except for a small region of fan-

tip aero-mechanical instability at high VIGV closure and high fan speed. The

instability is not considered to be a problem in a new VIGV type of convertible

engine. Instability could be avoided by designs which either reduce the blade-

tip aspect ratio or include part-span shrouds or dampers.

The success of these tests, the first for a VIGV convertible engine run-

ning in the dual power mode, demonstrated that this type of engine is suitable

for applications needing both thrust and shaft power.

Power balance. - When the VIGV were closed, the fan was unloaded by chang-

ing the tip airflow and the inflow swirl. In the turboshaft mode as the VIGV

were closed, airflow fell off until at full closure it was reduced by

90 percent (fig. 8). By design, some throughflow remained with the VIGV closed

in order to cool fan-stage parts heated by churning. The fan-hub power was

essentially constant as the airflow changed (fig. 9) because the speed was

steady and because the bleed valve was opened to keep hub flow constant at low

power. The tip power fell off as the VIGV were closed to about 60 percent and
then remained the same for further closure. The constant tip power, in view of

the decreasing tip airflow, indicates worsening compression efficiency and more

power lost in churning the tip airflow. With fully closed VIGV the tip wasted

23 percent of the turbine power in churning. Reduction in the churning loss
would add to available shaft power. However, churning losses as large as those

measured on the CEST TF34 may not be detrimental for high-speed rotorcraft

applications in which engine size is determined by the thrust needed for cruise

flight. As an example the power requirement for a conceptual X-wing is shown

in figure lO. In rotary-wing flight this aircraft would use only 30 percent

of the power that it needs for high,speed, horizontal, fixed-wing flight. An

engine having performance like the CEST TF34 could easily meet this

requirement.

Another way to view engine behavior is to consider a power balance for

the engine running at constant fan speed in the dual power mode with partially

closed VIGV. A typical power balance for this type of operation is shown in

figure If. Both the fan-hub and fan-t}p powers were nearly constant as shaft

power was raised (fig. ll) because both of those powers depend on speed and

VIGV closure. Turbine power went up with shaft power, and T4.5R rose as

fuel was added to provide this power. The turbine and hub powers are easily

computed from component maps and cycle computer programs. Nhen the tip power

is computed (using known methods at open VIGV) or estimated (closed VIGV), the

power balance is complete and engine performance is defined.



As discussed previously, the tip churning power loss is dependent on air-
flow and compression efficiency. Becauseof instrumentation limitations the
efficiency reported in figure 12 is based on fan-inlet and fan-nozzle measure-
ments and thus includes the pressure loss in the bypass ducting. With open
VIGV the efficiency was good and was close to the value predicted analytically
by the engine manufacturer. As the VIGV were closed, efficiency fell to nearly
zero. The poor efficiency at high closure seemsto be related to unusual fan
airflow behavior. During testing it wasobserved that the fan pumpedair radi-
ally outward when the VIGV were closed past about 75 percent, resulting in flow
concentration along the fan-case wall and leading to high turbulence and recir-
culation in the duct behind the fan stage (ref. ll). The poor efficiency
produced high tip outflow temperatures - values as high as 1.5 times the inlet
temperature (as muchas a 250 °F rise) were measured.

Fan research tests reported in reference 5 were done with a VIGV/fan

rotor/VEGV different from the CEST TF34 design. Several differences from the

CEST performance were measured, including significantly lower churning power
loss with closed VIGV. The lower loss was obtained with the VEGV closed also

(not done with CEST), but the rotor-exit temperature reached almost 500 °F.

Better understanding of fan flow behavior with closed VIGV might lead to

designs that successfully reduce flow and churning loss without thermal or

mechanical problems.

Specific fuel consumption. - For high-speed cruise flight a convertible

engine would be run in the turbofan mode at low VIGV closure to produce high

thrust, and thrust specific fuel consumption (SFC) would be most important.

The test results (fig. 13) show that for this type of operation the thrust SFC

was very nearly the same as that for the unmodified engine. The reason was

that the only significant change in fuel use came from the inlet pressure loss
across the VIGV, which was small. The large rise in SFC at high VIGV closure

was due to low thrust rather than to a sudden increase in fuel flow.

In the turboshaft mode only the output shaft power is used to compute

power SFC. Because most of the fuel is used to produce thrust at low VIGV clo-
sure, the power SFC is very high. A convertible engine probably would not be

operated in this way just to produce power; therefore the poor power SFC is of
no real interest. As the VIGV were closed, more of the turbine power went to

the shaft load, and the power SFC improved. The best power SFC was obtained

with fully closed VIGV, but it was st_ll not as good as that of modern shaft

engines mainly because of tip churning loss. These characteristics probably

would be acceptable for a high-speed rotorcraft in which high shaft power nor-

mally is needed only during takeoff and landing. For aircraft in which hover

is a large portion of the mission, the convertible engine would use signifi-

cantly more fuel than a conventional shaft engine.

In the dual power mode the definition of SFC is complicated because there

is no general way to apportion total fuel between thrust and shaft power.

Describing engine performance in terms of power-turbine SFC or block fuel used

during a particular manuever or mission would be satisfactory.



Dynamic Tests

The dynamic tests were performed using the digital engine control system
to control the VIGV, the VEGV,and the bleed valve and to hold fan speed con-
stant whenthe engine was run in the shaft control mode.

Simulated rotorcraft maneuvers. - The engine was commanded to provide the

estimated thrust and shaft power requirements at constant fan speed for several

rotorcraft maneuvers (fig. 14). The requirements came from the X-wing study of
reference 7 and included a takeoff with sufficient "thrust" for vector control.

The X-wlng conversion requirements were based on the same study but modified to

account for loss of engine thrust due to inlet momentum at conversion speed.

The resulting transient exercised the engine over the same core engine changes

as conversion at 5000-ft altitude and 250 kn. All the tests, except gust

response, were done with control anticipation. The engine responded stably and

effectively in every test (table I).

Thrust-step response. - Engine response (fig. 15) to a large thrust-

command step was much quicker in the shaft control mode (speed constant; VIGV
changing) than in the thrust control mode (VIGV locked; speed changing) because

the fan did not have to accelerate. The data suggest that the response was

limited only by the VIGV slewing rate. This attribute would be useful for

thrust vector control but might require large actuators.

The dead time (~50 msec) between command input and VIGV action can be par-

tially explained by hysteresis from mechanical wear in the VIGV actuation sys-

tem and by digital data synchronization in the engine control system. Further
investigation of this dead time was not possible within the scheduled test

period.

Torque-step response. - The engine responded effectively to a large torque

change (fig. 16). The waterbrake fulfilled the torque command in 1.5 sec.
Anticipation circuits in the engine control gave an initial fuel surge that

caused overtorque in the power turbine and a consequent increase in speed.

Then the speed control reacted to reduce fuel, resulting in speed droop. The

speed overshoot was 2,6 percent, and the droop was 5.8 percent. These varia-

tions are within a range comparable to that of modern production shaft engines.

The overshoot could be reduced by optimizing the anticipation circuitry gain,

and the droop could be minimized by optimizing the fuel/speed loop gain.

Cross-shafted Convertible Engines

Two-engine V/STOL aircraft powered with convertible engines could use the

engines for roll control in powered-lift flight by modulating emg_ne thrust.
However, if one of the engines lost power the unbalanced thrust could lead to a

rollover crash. For safety, the engines might be interconnected so that if one

engine failed the "good" engine could power both sides to keep the craft level,

although with reduced total thrust. A simple mechanical cross-shaft intercon-

nection for VIGV engines is sketched in figure 17. The performance of this

system with one of the core engines inoperative (such as a type I fuel system

failure or a type II fan shaft fracture behind the cross-shaft gearbox) is

illustrated in _igure 18. Before the failure both engines would run normally
with little or no shaft load, as shown on the steady-state map in figure 18(a).

After failure, the inoperative engine would lose core thrust, but its fan



(driven by the cross shaft at the samespeed as the good engine), would still
produce thrust. The fan thrust can be modulated by the VIGV, and as indicated
in figure 18(b), as the thrust is varied the power required to drive the fan
is changed. The good engine can provide this power, and maximumpower is
available whenthe fuel flow is increased to move the operating point to the

limiting power turbine inlet temperature line, as noted in figure 18(c). For
balance the fan on the failed side must produce the same thrust as the fan

plus core of the good engine, The required operating point is at the intersec-

tion of the two operating lines, as in figure 18(d). The intersection is

reached by proper settings of both VIGV's, and thrust unbalance would occur if

either setting is not correct. Results of the CEST engine steady-state tests
indicated that balanced thrust would be obtained at the following conditions:

"Good" engine "Inoperative" engine

Assumed condition for sea-level static Normal operation at Complete core failure,

standard-day flight (e.g., hover) limiting PTIT fan ok

Fanspeed, percent

VlGV, percent closed

Cross-shaft power, percent of

maximum output shaft power

Thrust, percent of one-engine

maximum

90

40

provides 89

66

90

16

absorbs 89

66

A control system that operates the VlGV's properly during failure seems

feasible. The rudimentary characteristics of a conceptual design are illus-

trated in figure 19. A failure detector might be a manual switch or a signal

from the cross shaft (which begins to transfer power if both engines are not

operating the same). At failure, the control system would increase fuel flow

to the good engine to raise its power turbine inlet temperature to the limit,

and at the same time change each of the VIGV's to approximately the final

angles. This action would require a logic system plus a schedule derived from

engine performance testing. The VIGV settings must be trimmed by the control

system from aircraft roll information, as engine thrust in flight is difficult

to measure accurately. Additional control system requirements would depend on

the particular aircraft application. Unfortunately, simulated failure tests

were not made with the CEST engine because of limited resources and test sched-
ule time.

CONCLUDING REMARKS

A convertible engine using variable inlet guide vanes (VlGV) to unload the

fan aerodynamically was successfully tested on an outdoor test stand at NASA

Lewis. The tests demonstrated that this type of engine could be used for pro-

pulsion of new high-speed V/STOL and rotorcraft needing both thrust and shaft

power. For V/STOL the engine might also be used to cross-couple the fans of a

two-engine aircraft, but the controls and dynamics for that application were
not tested.

In the steady-state tests the engine was operated in the turboshaft, tur-

bofan, and dual (combined fan and shaft) power modes. The engine ran smoothly

except for a small region at high VIGV closure and high fan speed where fan-tip



aeromechanical instability was found; otherwise, it was stable as speed, shaft
power, and any of the variable hardware settings were changed. This instabil-

ity is not considered to be a big problem for a new engine and could be avoided
by changes in blade design.

For rotorcraft propulsion the engine would be used in the turboshaft or
the dual power modeto drive a rotor for takeoff and low-speed flight. If
thrust during takeoff is low, the VIGVwould be closed and the engine fuel con-
sumption would be about 25 percent more than that of a turbofan engine running
at the samecore power level. The additional fuel is needed because power is
wasted in churning and heating the tip airflow with the VIGV closed. The
wasted power is not detrimental to rotorcraft having engines sized for high-
speed cruise, such as the X-wing, because the installed power would be great
enough to permit one-engine inoperative (OEI) hover at sea level.

In high-speed cruise flight the engine would be operated in the turbofan
modewith the VIGVopen (or nearly open) to produce thrust or in dual power
modeif shaft power is also neededfor auxiliary equipment such as a compres-
sor for X-wing blowing. The engine fuel Consumptionwould be comparable to
that of a conventional turbofan engine because the only change in fuel use
comesfrom the inlet pressure loss across the VIGV. The loss is small when
the VIGV are nearly open.

In dynamic performance tests with a specially bullt digital engine con-
trol system and using a waterbrake dynamometerfor shaft load, the engine eas-
ily handled large torque and thrust commandsteps, as well as simulated flight
maneuvers. The fastest thrust step was madeby changing the VIGV closure at
constant fan speed; in this control modethe response seemsto be limited only
by the VIGVslewing rate and would be useful for thrust vector control. During
a large torque step the speed droop was 5.8 percent, which is comparable to the
droop shownby production turboshaft engines. Simulated takeoff, X-wing con-
version, and collective pitch change maneuverswere performed successfully with
control anticipation, and response to a simulated gust load was performed suc-
cessfully without anticipation.

Engine performance was predictable with conventional analytical techniques
and computer cycle programs, except for the fan-tip churning power loss with
the VIGV closed. The power loss was more than expected, probably becauseof
unusual fan-stage flow behavior at high VIGV closure. Other reported test
results measured less churning loss with a VIGV/fan rotor/VEGV different from
the CESTdesign; however, rotor-exit temperature was very high. Better under-
standing of fan flow behavior with closed VIGV might lead to reduction of
churning loss wlthout other problems.

The test results were applied to a study case in which one core engine
failed in a two-engine cross-shafted V/STOLaircraft, and indicated that the
"good" englne could supply enough power through the cross shaft to the fan on
the inoperative side to keep thrust balanced. This action required changing
VIGVdefection in both engines, and total thrust was reduced.

lO
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TABLE I. - CEST TF34 ENGINE RESPONSE TO SIMULATED ROTORCRAFT

MANEUVERS SHOWN IN FIGURE 14

Maneuver

Takeoff

Takeoff wlth

maximum vector

control

Command Shaft power Thrust
time,

sec Time from start to

reach 95 percent

of level,

sec

1.8 2.2 ---

l .8 2.1 2.6

Collective pitch 1.0 1.0 1.0

Unanticipated

gust

X-wing conversion

.15

18.0

.5 .5

(a) (a)

Speed Speed

overshoot, droop,

percent percent

3.6 5.1

l .4 5.2

3.5 2.?

1.3 0

0 0

aFollowed commands.
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_ • POSSIBLE CONVERTIPLE ENGINE APPLICATIONS

o OTHERS, FOR COMTARISON

OMPOUND/ABC

(_ FOLDING TILT ROTOR_

-- p

ELECTRA __ _LIFTFAN

PROPELLER J/ /_4_ /
-- ,....../ _ , JET LIFT

TILT WING J / _._ I
PROPFANJ __I

I, l,i,l,li ,J,J,iJ i, i,i,,_,_,_,i

I0 102 10 3 10 4

DISK LOADING, LB/FT2

FIGURE I.- AIRCRAFT THAT COULD USE CONVERTIBLE ENGINES. (DATA

FROM REFS. 9 AND 11.)
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_0_ POOR QUAI.I_I_

FIGURE 2. - GRUMMAN DESIGN G98TILT NACELLE V/STOL AIRCRAFT.

VARIABLE SHROUDED FAN BLADE
INLET Cr"

7 // /- VARIABLE EXITGUIDE VANE

. . ] t- _ _ GUIDE VANE
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% i / I I II _._--BLEED VALVE
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\T- I, ,-_'_'_-_ ' _..........._'_ :,;:,,T; _"' _Z_- -

,_i" . ..... _" ' ., ,i !

" STANDARD TF34

FIGURE 3. - TF34 CONVERTIBLE ENGINE CoMPARED'WITH STANDARD TF34 ENGINE.
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FIGURE 4. - CEST TF3B DESIGN FEATURES.
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o_ _ 80

70

4200

3800

3400

ATERBRAKE DEAD TIME
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TIME, SEC

FIGURE 5. - CLOSED-LOOP RESPONSE OF WATERBRAKE TORQUE CONTROL

SYSTEM TO STEP CHANGE. INITIAL FAN SPEED, NF, 85 PERCEN_

CONSTANT ENGINE FUEL FLOW.
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FIGURE 6. - CEST TF34 CONVERTIBLEENGINE ON TEST STAND.
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FIGURE 7. - SEA-LEVEL-STATIC PERFORMANCEOF CEST TE34 ENGINE.

REFERREDFAN SPEED, NFR, 90 PERCENT.
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FIGURE 8, - FAN-TIP AIRFLOW IN TURBOSHAFTMODE. REFERREDFAN

SPEED, NFR, 90 PERCENT.
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FIGURE 9. - POWERBALANCE IN TURBOSHAFTRODE.

SPEED, NFR, 90 PERCENT.
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F GURE 10. - POWER REQUIRED FOR CONCEPTUAL X-WING AIR-

CRAFT. (FROM REF. 9.) SEA-LEVEL STANDARD CONDITIONS.
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FIGURE 11. - TYPICAL POWER BALANCE IN DUAL POWER MODE. RE-

FERRED FAN SPEED, NFR, 90 PERCENT; VIGV CLOSURE, 42 PERCENT.
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FIGURE 12. - FAN-TIP ADIABATIC COMPRESSION EFFICIENCY BASED ON

FAN-INLET AND FAN-EXHAUST NOZZLE MEASUREMENTS. REFERRED FAN

SPEED, NFR, 90 PERCENT.
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(A) THRUST SFC IN TURBOFAN MODE.

m

]

3

0 20 40 GO 80 100

VIGV CLOSURE, PERCENT

(B) SHAFT POWER SFC IN TURBOSHAFT MODE. POWER FOR UNMODIFIED

ENGINE IS POWER DRIVING BYPASS FLOW THROUGH FAN TIP.

FIGURE 13. - SEA-LEVEL STATIC SPECIFIC FUEL CONSUMPTION (SFC).

REFERRED FAN SPEED, NFR, 90 PERCENT.
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FIGURE 14. - SIMULATED ROTORCRAFT MANEUVERS TESTED WITH CEST TF34

ENGINE AND CONTROL SYSTEM. REFERRED FAN SPEED, NFR, 95 PERCENT_
TIMES SHOWN ARE COMMANDED TIMES.
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_: _ I00
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,2o 80

40

ol I I I I ] I

F--
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,FIGURE 16. - ENGINE RESPONSE TO LARGE POWER OUTPUT SHAFT TORQUE

CHANGE. ENGINE CONTROL IN SHAFT MODE; VIGV CLOSURE, 77 PER-

CENT; REFERRED FAN SPEED, NFR, AT END OF TRANSIENT, 95 PERCENT.
RATIOS SHOWN AS PERCENT OF FINAL VALUE.

/-VIGV
/
/ r-FAN

/ /

CROSS SHAFT _/ AIRCRAFT {

_ENGINE I

FIGURE 17, - TWO ENGINES TH CROSS SHAFT. FAN SHAFTS MAY

INCLUDE OVER-RUNNING CLUTCHES,
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(B) POWER REQUIRED (LOAD) TO DRIVE FAN IN ENGINE WITH
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BALA ENGINE ON
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1
THRUST

(D) BALANCED THRUST AT INTERSECTION OF "POWER AVAILABLE"

AND "LOAD" LINES.

FIGURE 18. - CROSS-SHAFTED VIGV CONVERTIBLE ENGINES WITH ONE FAILED ENGINE.
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FIGURE 19. - RUDIMENTARY CONTROL CONCEPT FOR CROSS-SHAFTED

CONVERTIBLE ENGINES, TO BALANCE THRUST WITH ONE ENGINE

INOPERATIVE.
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